Capturing Atomic Interactions with a Graphical Framework in Computational Protein Design

نویسندگان

  • Andrew Leaver-Fay
  • Jack Snoeyink
  • Fred Brooks
  • Brian Kuhlman
  • Jan Prins
  • Alex Tropsha
چکیده

ANDREW LEAVER-FAY: Capturing Atomic Interactions with a Graphical Framework in Computational Protein Design. (Under the direction of Jack Snoeyink) A protein’s amino acid sequence determines both its chemical and its physical structures, and together these two structures determine its function. Protein designers seek new amino acid sequences with chemical and physical structures capable of performing some function. The vast size of sequence space frustrates efforts to find useful sequences. Protein designers model proteins on computers and search through amino acid sequence space computationally. They represent the three-dimensional structures for the sequences they examine, specifying the location of each atom, and evaluate the stability of these structures. Good structures are tightly packed but are free of collisions. Designers seek a sequence with a stable structure that meets the geometric and chemical requirements to function as desired; they frame their search as an optimization problem. In this dissertation, I present a graphical model of the central optimization problem in protein design, the side-chain-placement problem. This model allows the formulation of a dynamic programming solution, thus connecting side-chain placement with the class of NP-complete problems for which certain instances admit polynomial time solutions. Moreover, the graphical model suggests a natural data structure for storing the energies used in design. With this data structure, I have created an extensible framework for the representation of energies during side-chain-placement optimization and have incorporated this framework into the Rosetta molecular modeling program. I present one extension that incorporates a new degree of structural variability into the optimization process. I present another extension that includes a non-pairwise decomposable energy function, the first of its kind in protein design, laying the ground-work to capture aspects of protein stability that could not previously be incorporated into the optimization of side-chain placement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Autonomic Service Oriented Architecture in Computational Engineering Framework

Service Oriented Architecture (SOA) technology enables composition of large and complex computational units out of the available atomic services. Implementation of SOA brings about challenges which include service discovery, service interaction, service composition, robustness, quality of service, security, etc. These challenges are mainly due to the dynamic nature of SOA. SOAmay often need to ...

متن کامل

An Autonomic Service Oriented Architecture in Computational Engineering Framework

Service Oriented Architecture (SOA) technology enables composition of large and complex computational units out of the available atomic services. Implementation of SOA brings about challenges which include service discovery, service interaction, service composition, robustness, quality of service, security, etc. These challenges are mainly due to the dynamic nature of SOA. SOAmay often need to ...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Computational Approaches for the Design and Prediction of Protein-Protein Interactions

There is a large class of applications in computational structural biology for which atomic-level representation is crucial for understanding the underlying biological phenomena, yet explicit atomic-level modeling is computationally prohibitive. Computational protein design, homology modeling, protein interaction prediction, docking and structure recognition are among these applications. Models...

متن کامل

Genetic analysis of Biochemical and Physiological Traits using Haymen’s Graphical Approach in Lines and F2 Progenies of Maize (Zea mays L.)

The diallel mating design is an important tool used by plant breeding programs to obtain information on trait inheritance. Knowledge of gene action, heritability and genetic advance from selection is a prerequisite for starting a breeding program for developing varieties of maize. Five maize S7 lines and their F2 progenies were studied in a 5 × 5 half-diallel crossing design to evaluate the gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006